
U8. Memory Utility Commands
    ViewIt supports commands that can be used to check free memory, dynamically allocate
blocks, remove modules from memory, and clean up memory when quitting from within
environments such as HyperCard.
    FaceWare's approach to heap memory management makes use of a minimum "buffer" of
free memory that all modules attempt to maintain.    The size in bytes of this buffer is saved
in fHeapBuff, which has a default value of 16384 bytes (16K).    The value of fHeapBuff can
be changed by the program at any time after DoInit is called, although 16K is sufficient for
most programs.    You should think of fHeapBuff as representing the size of a shared pool of
heap memory used for disk-based resource swapping under low memory conditions (i.e.
memory into which fonts and other purgeable resources can be swapped).
    FaceWare modules attempt to maintain at least fHeapBuff bytes of free heap memory by
calling ChkMem or NewBlk before each action that would consume significant amounts of
free memory.    Note that this scheme does not protect the main program from making its
own mistakes, and so we recommend that it too make use of ChkMem or NewBlk (or an
equivalent scheme) when attempting to allocate large blocks of memory.

Name    Number    Parameters & Variables used
ChkMem    171    a,b,c,uResult
    Attempts to find a contiguous block of free memory at least a + fHeapBuff bytes in size.    Attempts to find a contiguous block of free memory at least a + fHeapBuff bytes in size.   
If necessary, ChkMem will, in succession, compact memory, purge memory, request memoryIf necessary, ChkMem will, in succession, compact memory, purge memory, request memory
from other modules, and move the clipboard to disk until a contiguous block equal to or from other modules, and move the clipboard to disk until a contiguous block equal to or
larger than the specified size is found.larger than the specified size is found.
    The extent of the operations performed when searching for free memory can be optionally    The extent of the operations performed when searching for free memory can be optionally
restricted via parameter b (= sum of following bit values):restricted via parameter b (= sum of following bit values):
      0 = no restrictions      0 = no restrictions
      1 = don't remove purgeable blocks      1 = don't remove purgeable blocks
      2 = don't request memory from other modules      2 = don't request memory from other modules
      4 = don't move the clipboard to disk      4 = don't move the clipboard to disk
Parameter c can be optionally used to designate a number of bytes to use in place of Parameter c can be optionally used to designate a number of bytes to use in place of
fHeapBuff (i.e., if c > 0,    a + c becomes the target block size).fHeapBuff (i.e., if c > 0,    a + c becomes the target block size).
    The size in bytes of the largest contiguous block that is safe to allocate (= largest block -     The size in bytes of the largest contiguous block that is safe to allocate (= largest block -
fHeapBuff) is returned in uResult.    Thus a program calling ChkMem can simply check to see fHeapBuff) is returned in uResult.    Thus a program calling ChkMem can simply check to see
whether uResult ≥ a upon return.whether uResult ≥ a upon return.
        A good way to think of parameter a is to view it as a gauge of how much work you are A good way to think of parameter a is to view it as a gauge of how much work you are
asking ChkMem to do.    Small values will be easy to satisfy, require few changes to the heap,asking ChkMem to do.    Small values will be easy to satisfy, require few changes to the heap,
and return the smallest values of uResult.    Larger values of a can ultimately force all and return the smallest values of uResult.    Larger values of a can ultimately force all
purgeable blocks from the heap, and return the largest possible value of uResult.purgeable blocks from the heap, and return the largest possible value of uResult.
    WARNING:    Unlike most other utility commands, ChkMem does not preserve the "w" and     WARNING:    Unlike most other utility commands, ChkMem does not preserve the "w" and
"c" variables in fRec."c" variables in fRec.

NewBlk    172    a,b,c,uResult
    Performs a ChkMem and, if at least a free bytes can be safely allocated, creates a new Performs a ChkMem and, if at least a free bytes can be safely allocated, creates a new
relocatable block, moves it high in the heap, locks it down, and returns a handle to the blockrelocatable block, moves it high in the heap, locks it down, and returns a handle to the block
in uResult.    If unsuccessful, uResult is set equal to zero. Use the toolbox call DisposHandle in uResult.    If unsuccessful, uResult is set equal to zero. Use the toolbox call DisposHandle
to later remove such a block from memory.    Parameters b and c have the same meaning as to later remove such a block from memory.    Parameters b and c have the same meaning as
described above for ChkMem.described above for ChkMem.
    For example, the following code allocates an 80,000 byte block and saves its handle in     For example, the following code allocates an 80,000 byte block and saves its handle in
"myHandle" (Pascal source),"myHandle" (Pascal source),
    FaceIt(nil,NewBlk,80000,0,0,0);    FaceIt(nil,NewBlk,80000,0,0,0);
    if (uResult <> 0) then    if (uResult <> 0) then
      begin      begin
        myHandle := Handle(uResult);        myHandle := Handle(uResult);
        [do something with the block]        [do something with the block]
        DisposHandle(myHandle);        DisposHandle(myHandle);

      end      end
where the address of the block would be given by myHandle^ [Pascal], *myHandle [C], or where the address of the block would be given by myHandle^ [Pascal], *myHandle [C], or
long(myHandle) [FORTRAN].long(myHandle) [FORTRAN].
    WARNING:    Unlike most other utility commands, NewBlk does not preserve the "w" and "c"    WARNING:    Unlike most other utility commands, NewBlk does not preserve the "w" and "c"
variables in fRec.variables in fRec.

PrgCmd    173    a
    Attempts to unlock the FCMD and/or FACE resource(s) belonging to the module(s) Attempts to unlock the FCMD and/or FACE resource(s) belonging to the module(s)
designated by a.    Unlocking such resources will make them purgeable so that the memory designated by a.    Unlocking such resources will make them purgeable so that the memory
they occupy can be used for other purposes.they occupy can be used for other purposes.
    a = scope of FCMD/FACE resources in use by the main program that are to be unlocked     a = scope of FCMD/FACE resources in use by the main program that are to be unlocked
(made purgeable)(made purgeable)
      0 = all FCMD/FACE resources in System & Appl. Heaps      0 = all FCMD/FACE resources in System & Appl. Heaps
      1 = all FCMD/FACE resources in System Heap      1 = all FCMD/FACE resources in System Heap
      2 = all FCMD/FACE resources in Application Heap      2 = all FCMD/FACE resources in Application Heap
      <32768 = resource ID of a single FCMD/FACE resource      <32768 = resource ID of a single FCMD/FACE resource
      other = address of single shared record (single instance)      other = address of single shared record (single instance)
PrgCmd will fail to unlock an FCMD or FACE resource if a shared record associated with the PrgCmd will fail to unlock an FCMD or FACE resource if a shared record associated with the
resource exists which is not included in the scope of a, or if the resource's purge bit is not resource exists which is not included in the scope of a, or if the resource's purge bit is not
set.      For example, if a main program requested that an FCMD be unlocked (made set.      For example, if a main program requested that an FCMD be unlocked (made
purgeable), then this would not be done if the FCMD was part of the System file and was, at purgeable), then this would not be done if the FCMD was part of the System file and was, at
the same time, being used by another program.the same time, being used by another program.
    The most common use of PrgCmd is to unload as many FaceWare modules as possible     The most common use of PrgCmd is to unload as many FaceWare modules as possible
before performing a program operation that makes use of the recovered heap memory:before performing a program operation that makes use of the recovered heap memory:
    FaceIt(nil,PrgCmd,2,0,0,0);    FaceIt(nil,PrgCmd,2,0,0,0);
The next call to the "FaceIt" dispatching procedure will then reload any necessary FaceWare The next call to the "FaceIt" dispatching procedure will then reload any necessary FaceWare
modules.    WARNING:    If you unload all FaceWare modules, consume most of the heap modules.    WARNING:    If you unload all FaceWare modules, consume most of the heap
space, and then make a "FaceIt" call, you won't have enough memory to reload FaceWare space, and then make a "FaceIt" call, you won't have enough memory to reload FaceWare
modules!    Thus the best use of PrgCmd is to recover memory for temporary purposes so modules!    Thus the best use of PrgCmd is to recover memory for temporary purposes so
that it can be released again before reloading modules.that it can be released again before reloading modules.
    Finally, note that some modules include FACE and other resource types that are loaded by     Finally, note that some modules include FACE and other resource types that are loaded by
the module itself (vs. LoadIt), meaning that PrgCmd will have no effect on such resources.    the module itself (vs. LoadIt), meaning that PrgCmd will have no effect on such resources.   
In these cases a module-specific command will often be provided to directly unload such In these cases a module-specific command will often be provided to directly unload such
resources.resources.
    MODULE DEVELOPERS:    If using PrgCmd from within a FaceWare module, be careful not to    MODULE DEVELOPERS:    If using PrgCmd from within a FaceWare module, be careful not to
unload any modules that were used to call the module that is executing PrgCmd, nor unload any modules that were used to call the module that is executing PrgCmd, nor
execute code that moves memory after calling PrgCmd to unload one's self.execute code that moves memory after calling PrgCmd to unload one's self.

DoUnld    -63    [none]
    Cleans up FaceWare's use of current application heap by (1) closing all open ViewIt
windows, (2) disposing of all blocks in the heap that were dynamically allocated by ViewIt disposing of all blocks in the heap that were dynamically allocated by ViewIt
when DoInit was first called, and (3) calling PrgCmd with a = 2 to unload all FaceWare when DoInit was first called, and (3) calling PrgCmd with a = 2 to unload all FaceWare
modules.modules.
    DoUnld is useful in high-level environments where programs can be exited without quitting    DoUnld is useful in high-level environments where programs can be exited without quitting
to the Finder (such as when switching stacks within HyperCard).    WARNINGS:    Do not call to the Finder (such as when switching stacks within HyperCard).    WARNINGS:    Do not call
DoUnld from within programs that make use of the FaceIt module, and do not make any DoUnld from within programs that make use of the FaceIt module, and do not make any
calls to the "FaceIt" dispatching procedure after calling DoUnld.calls to the "FaceIt" dispatching procedure after calling DoUnld.

